Janet Richmond

Professor and Head

Education:  PhD, University of Calgary

About Dr. Richmond's Research
Synaptic transmission is the principal form of rapid communication between neurons. In this calcium-regulated process, synaptic vesicles are triggered to fuse with the presynaptic membrane at specialized active zones. Vesicle fusion releases neurotransmitter that binds to and activates post-synaptic receptors. Changes in the strength of this signaling process are thought to be important for learning and memory.

In my laboratory, we combine genetic and molecular approaches with high-pressure freeze EM, optogenetics and in vivo electrophysiological analyses of synapses to study the involvement of proteins in exocytosis and endocytosis using the nematode Caenorhabditis elegans and more recently Drosophila. These are powerful genetic model organisms, in which we use the accessibility of the neuromuscular junctions in wild type and mutated animals as a tractable model synapse to address the following questions.

Three conserved SNARE proteins (for SNAP receptors) are known to be essential for synaptic vesicle fusion. My lab is interested in how other SNARE- interacting proteins function in the regulation of synaptic transmission. We have shown that both UNC-13 (Munc13) and UNC-18(Munc18) play essential roles in the priming of vesicles for fusion, where as tomosyn negatively regulates this process. Furthermore, our research has demonstrated an important role for tomosyn in PKA-dependent learning. We are presently extending these studies to determine the signaling pathway and mechanism by which tomosyn impacts this conserved form of synaptic plasticity.

In addition, we are interested in the molecular mechanisms that determine presynaptic organization, with present emphasis on the signals that govern the docking of synaptic vesicles at the presynaptic density, as well as the events underlying synaptic remodeling.

No synapse can function effectively without the proper placement of post-synaptic receptors. In C. elegans, three receptor classes (2ACh and 1GABA) are localized to specific post-synaptic densities at neuromuscular junctions, via different molecular scaffolds. The lab is actively engaged in identifying the components responsible for the trafficking and localization of both ACh receptors.

Representative Publications (Complete list of publications on Google Scholar)

profile photo

Contact Information

Office: 4309 SELE, MC 067
Phone: 312-413-2513
Fax: 312-996-2805
Email: jer@uic.edu